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Es wird gezeigt, daB bei der Tschebyscheff-Approximation durch y-Polynome
der Ordnung k hochstens k! lokal beste Approximationen auftreten. Damit wird
insbesondere das Problem der Mehrdeutigkeit bei der Exponentialapproximation
bewaltigt. Fur die Untersuchung muB das Konzept generischer Eigenschaften in
der nichtlinearen Approximationstheorie eingefUhrt werden, urn Morsetheorie
anwenden zu konnen. Die Situation ist vollig anders als bei der L2-Approximation
mit Exponentialsummen, da es dort keine Schranke fUr die Zahl der lokalen
Losungen geben kann.

INTRODUCTION

In 1967 Hobby and Rice [12] introduced the idea of y-polynomials. Their
concept provided a natural generalization of approximation by sums of
exponentials. In the same year it was shown that best uniform approximation
is not always unique [4]. Therefore the question arose of whether the number
of solutions is always finite and whether there is a finite bound:

Ck = sup {number of local best approximations to/in Vd. (14.1)
feC(X)

Here we have already taken into account that it is mathematically more
elegant and gives more insight to consider not only the global solutions but
also the local ones.

The problem was settled only for the simplest nontrivial cases [3]. Besides
Cl = 1 we have C2 = 2. More recently the rough estimate C3 0(; 9 was presented
in [9].

In 1973 the author [7] anounced the result that Ck < k! for all k. Un­
fortunately, a serious gap was later detected in the proof. It became apparent
that it is impossible to neglect certain cases of degeneracy. Only now, 3 years
later, we have succeeded in bridging the gap by using the concept of generic
properties. When the standard construction for all local solutions is
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developed, certain exceptional cases are ignored. Nevertheless, the situation
is more advantageous than most in topology. Here the final result is extended
also to the exceptional functions. With the aid of perturbation techniques it
is proved that the bound holds in all cases.

Though the rigorous treatment of the problem must be done in a very
abstract setting, the basic idea may be better described from the numerical
viewpoint. When one intends to compute a best approximation and applies
Newton's method, then a sequence is generated which in general will con­
verge only to a local best approximation. Which one of the (possibly many)
local solutions is found, greatly depends on the starting point of the iteration.
The following question is the key to the solution: Is it possible to characterize
a set of starting points from which all solutions are reached, when applying
Newton-like algorithms?

The continuous analog of Newton's method is just what we need when
applying critical point theory. To be more specific, we use the introductory
part of Morse theory as in [8]. This is possible because the manifolds under
consideration are trivial from the homotopical point of view. On the other
hand the theory is by no means trivial, because the manifolds are not compact.
The lack of compactness is the reason for the complexity of the analysis.

The results show once more that uniform approximation is always some­
thing special in nonlinear approximation theory. As was shown by Wolfe
[18], one has Ck = 00 even for k = 1 when the approximation problem is
considered in the L2-case.

This paper is a continuation of the author's two papers on y-polynomials
[6]*). Therefore, we proceed with enumerating formulas and theorems. All
references to Eqs. (1.1)-(13.]) and Theorems 2.1-] 2.5 refer to those papers.

The standard notation for a y-polynomial is

l 111 1,-1

F(a, x) = I I Q',.~y(I')(t" x),
1 u-d)

(14.2)

When the family VN of y-polynomials of order ~N is considered, the kernel
y is assumed to be extended sign-regular of order 2N, where the extension is
in the t-variable [14]. In particular, this means that the derivatives y("1 =

o"/ot"y exist for fL ~ 2N - I.
In the interest of simplicity some additional assumptions are made. They

are natural, and have been verified for the interesting families of functions,
e.g., for the sums of exponentials they are consequences of Schmidt's
compactness results [16]. Specifically we will assume that T, the domain of
the characteristic numbers t1 , t 2 , ... , tN' is an open connected subset of IR.

* We want to indicate that part II of the paper contains a serious misprint. Please start
reading on the top of page 17 until the end of the third paragraph. Then proceed with
page 16 and continue on page J7 with the fourth paragraph.
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Then without loss of generality T may be identified with IR. Moreover, VN is
assumed to be normal in the sense of Section 8, i.e., for each Fo E VN\VN- 1

there is a neighborhood U(Fo) such that the spectrum ( = set of characteristic
numbers) of all y-polynomials in U(Fo) belongs to a compact subset of T.
Finally we assume that each sequence of y-polynomials which is bounded in
C(X) contains a subsequence which converges to a y-polynomial in the
topology of compact convergence on X. Then each closed and bounded set
in VN\VN- 1 is compact in the norm topology.

The consequences of our theory for the numerical solution of the approxi­
mation problem are obvious. In particular the difficulties in the classical
algorithms for treating spline functions with free knots [2] may be overcome
by the regularization procedure [11] which yields the connection with
y-polynomials.

15. A PARTIAL UNIQUENESS RESULT

In Section 12 local best approximations (for short: LBAs) were
characterized in terms of alternants. The criteria provide conditions which
are both necessary and sufficient. In the framework of critical point theory [8]
the characterization theorem (Theorem 12.3) is recognized as a consequence
of the fact that VN\VN~l is a Haar embedded manifold.

The theory of Haar embedded manifolds is central to the present paper. In
particular we apply the Nonzero Index Theorem which was derived in [8]
with methods from global analysis. To this end we have to modify slightly
the parametrization used in Section 12.

DEFINITION 15.1. A subset G of a normed linear space E is called a
Cl-manifold (with boundary), if for every Fo E G there is a neighborhood
U C G with the following properties:

(i) There is a closed convex set C C IR n and a homeomorphism g: W-+
U with W relatively open in C. (g will be called centered at Fo if g-l(Fo) = 0.)

(ii) g is a Frechet differentiable map and the derivative dag is continuous
in a.

(iii) There is a continuous mapping

K : U -+ doo g ( U '\C)
~>o

with Fo = g(ao)' satisfying

K(Fo) = 0,

II F - Fo - K(F)I: = 0(11 K(F) Ii)·
(15.1 )
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DEFINITION 15.2. hE E is a tangent ray at F to GeE, if there is a con­
tinuous mapping from [0, 1] to G which sends .\ to FA E G such that

ii FA -- F- .\h II = 0(.\), as ,\ --+ 0. (15.2)

The set of all tangent rays at F is called the tangent cone and is denoted by
CFG.

For C1-manifolds the tangent cone can be easily calculated since

CFG = dag ( U .\C)
A>O

(15.3)

if F = g(a). We will verify that the tangent cone for an element F(a) in
VN /VN - 1 is just the cone W(a) explicitly given in Definition 12.1.

To develop a suitable parameterization for VN we consider first the neigh­
borhood of a y-polynomial with only one characteristic number t. Let its
multiplicity be m ~ 2. Define the mapping g : A -->- Vn , where

m-2
g(fJ1 ,•.. , fJm , t1 , t2 ,... , tm- 2 , u, v) = L fJ"y".(t1 , t2 ,... , t" ; x)

J.L=1

+ tfJm-1[Ym-1(t1 ,""", t"'_2 , U+ V1/2; x)

+ Ym-1(t1 , , tm- 2 , u - V1/2; x)]

+ fJmYm(t1 , , tm- 2, u + V1/2, U- V1/2;x)
(I 5.4)

The domain

A = {(fJ1 , fJ2 ,... , fJm , t1 ,... , t"'_2 , u, v) E [R2m;

(I5.5)

is a convex set. Indeed, the inequalities are equivalent to

-v ~O,

t" - t"+l ~ 0,

tm - 2 - u - V 1 / 2 ~ 0,

fL = 1, 2, ... , m - 3,

and the left-hand sides are convex functions of the arguments.
Note that the use of square roots does not spoil the differentiability of the

representation.



y-POLYNOMIALS

This follows from

a
av [y,,(... , u + V

1
/
2

, ... ; x) + y,,(... , u - V1/ 2, ; x)]

= y"+2('''' U + V1/
2
, U + V1/2, U - V1/2, ; x)

+ Y"+2("" U + V1/2, U - V1/2, U - V1/2, ... ; x),

123

(15.6)

a ( + 1/2 1/2.)av y" ... , U v, U - v, ... , x

= Y"+2("" U + V
1

/
2
, U + V1/2, U - V1/2, U - V1/2, ... ; x).

In the particular case when m = 2 and yet, x) = etx, the representation (15.4)
reads (cf. Section 7):

Here only entire functions are involved.
The mapping (15.4) obviously satisfies conditions (i) and (ii) of Definition

15.1. To prove the third condition let a be a parameter corresponding to a
y-polynomial with m coalescing characteristic numbers, i.e.,

t1 = t2 = ... = tm - 2 = U = T,

Then the set of tangent vectors to A at a is

CaA = U A(A - a)
A>O

v =0.

Yjm ~ 0, Yj" - Yj,,+1 :;;;; 0, I-'- = 1,2,..., m - 3}. (15.7)

Referring to the calculations in the last part of the proof of Theorem 12.3,
we obtain

(15.8)

j
m+2 I

= "~1 O"y,.{T, ... , T; x); 0" E IR, Om+2 • f3m ~ 0\

Now, by Lemma 10.2, a map K is established with the properties postulated
in Definition 15.1. From (15.3) we know that the set in (15.8) is the tangent
cone Cg(al Vm .
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Next we turn to y-polynomials with more than one distinct characteristic
number. Given F[a] E VN \VN - 1 we may apply the parameterization according
to (15.4) to each of the I partial sums in the standard form (14.2). From the
arguments given in the proof of Theorem 11.2 it follows that a suitable
parameterization for an open neighborhood of F[a] is established. Moreover,
we recognize that the set W(a) from Definition 12.1 is just the tangent cone
CF(a) VN •

The preceding discussion yields an atlas of VN \ V IV - 1 consistent with
Definition 15.1. In fact VIV \ V"'-l is a Haar embedded manifold, because the
tangent cones are convex and have the Haar property [8]:

DEFINITION 15.3. Let VI , V2 , ••• , V n E C(X) and m ~ n. The convex cone

lu; u(x) = I tX;v;(x); tx; E IR for i = 1,2,... , m, tx; > °for i = m + 1,... , n(
( ;~1 .

has the Haar property, if the functions {U;}iEl span a Haar subspace, when­
ever

{l, 2, ... , m} C IC {I, 2, ... , n).

If each tangent cone to a Cl-manifold G has the Haar property, then G is
called a Haar embedded manifold.

DEFINITION 15.4. F is called a critical point tofin G if 0 is a best approxi­
mation to (f - F) in CFG.

Since VN \VN - 1 is a Haar embedded manifold, it follows from [8, Theorem
7.1] that F is an LBA to fin VN \ VN-1 if and only if F is a critical point. This
equivalence has also been derived explicitly for y-polynomials in Theorem
12.3.

A direct application of the Nonzero Index Theorem from critical point
theory is impossible because of the lack of compactness of V~, . It may be
applied, however, to get a local result. As usual for any nonnegative real
number tx put

(15.9)

THEOREM 15.1. Let VN be a normal family and let f E C(X). Assume that
Cpn is a (connected) component of p~, tx > 0, which is disjoint from VN - 1 •

Then Cpo contains exactly one local best approximation.

Proof Since Cpn is bounded, closed, and disjoint from VN - 1 • it IS

compact. By applying [8, Satz 7.3] we obtain the theorem. I
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16. THE MAXIMAL COMPONENTS ASSOCIATED TO LOCAL BEST ApPROXIMATIONS

Let F* E VN \ VN -1 be an LBA tof Denote the component of the level set p'"
which contains F* by Cpo. Further set

/3 = sup{ex; Cpo n Vn - 1 = 0}.

It follows from Theorem 15.1 that F* is the unique LBA tolin

Cp = U Cp"'.
",<IJ

(16.1 )

For this reason we call Cp the associated maximal component. In this
section we will prove that the boundary of Cp contains an LBA in Vk ,

k ~ N - 1. In fact k = N - 1 holds in most cases (cf. Section 19). From
these properties we will obtain a classification of the solutions in VN in terms
of the solutions in VN-1 , which finally leads to an enumeration.

Referring to (16.1) we observe that /3 ~ IIIII = III - 0 II, because Cp"',
ex = iilll , contains the y-polynomials ,\ . F*, 0 ~ ,\ ~ 1. Furthermore, we
claim that /3 > III - F* ii . Indeed, from Corollary 12.4 we know that F* is a
strong LBA, i.e., there are numbers c > 0, r > °such that

1- FII ~ 111 - F* I: -t- ell F - F* ii, (16.2)

whenever FE VN , II F - F* Ii < r. We may assume that r is smaller than
the distance of F* from VN - 1 • Put ex = III - F* II + ~cr. Hence, p'" contains
no element of VN , whose distance from F* equals r. The component Cp'" of
p'" containing F* is disjoint from VN-1 •

The next step is the proof of the following:

ASSERTION 16.1. The closure Cp of the maximal component intersects

VN - 1 •

Proof Suppose to the contrary that the assertion is not true. Then we may
construct an extension of Cp which is also disjoint from VN-l . Since Cp is
bounded and closed, by the normality assumption it is compact. Obviously,
we have

II/-FII=/3

for each F in the boundary acp := Cp\Cp. Since Cp is connected, acp
contains no strong LBA and therefore no critical point. By [8, Lemma 4.2.],
for each Fo E acp there is an open neighborhood U = U(Fo) and a continuous
mapping

if; : [0, 1] X V --+ VN
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FEU, 0 s <= t 1.
( 16.3)

After reducing U, if necessary, the following properties hold:

(1) VnVN _ 1 =
(2) V is compact and connected,

(3) ii/- ~J(I, F)[ < (3 for each FC V.

Note that FE Cp implies .p(t, F) E Cp for 0 < t ~ I. Since U n Cp is not
empty, .p(1, V) intersects Cpo From the connectedness of lj;(I, V) and (3) we
obtain .p(I, V) C Cpo Consequently,

II/-FII>(3 whenever FE U\Cp. (16.4)

Otherwise the orbit .p(t, F), 0 < t ~ 1, would establish a connecting arc
between F and .p(I, F) which runs below the level (3 and hence in Cpo

A finite number of such open sets say V 1 , V2 , ... , Vrn cover acp.
rn

V = U V j :) 8Cp.
j~l

(We remark that V is a substitute for a tubular neighborhood of acp.) The
set

M = V\(Vu Cp) (16.5)

is compact, and the distance function II! - FII achieves its minimum at some
F1 E M. From (16.4) we obtain III - F1 1: > (3. Since Cp u V is connected,
this set contains a component of the level set

which contradicts the maximality of (3. Hence, Cp intersects VN - 1 • I
The investigation of the maximal components requires the handling of

sequences fFr} C VN \ VN - 1 which converge to a y-polynomial F with degree
k = keF) ~ N - 1. We will next separate a sequence {vr} from {Fr} such
that k(vr ) = k and Vr --..F. Unfortunately, this cannot be done by a simple
splitting with the complement satisfying k(Fr - Vr) = N - k. This is
illustrated by the sequence in V2 having the elements

Fr = 5y(I, x) - 2y(I + l/r, x),

which converges to 3y(1, x) E V1 •

r = 1,2,... ,
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The appropriate splitting process will be performed in two steps. Let
{A~r), fL = 1,2'00" N} be the spectrum ofFr. We may relabel the characteristic
numbers such that after passing to a subsequence the following properties
hold with some j ~ N:

(1) For fL ~j the limits

A* = lim Air)
IJ, r--" 00 1J,

exist and belong to spect(F).

(2) For fL > j, the sequence {,\~)} has at most one accumulation point
and this one is disjoint from spect(F).

Choose an open subset To C T with compact closure, which contains
spect(F) but no accumulation point of {,\~)}, fL > j. Divide each F r into two
parts

F T = vr + Ur , spect(Vr ) C To , spect(ur ) C T\To .

We claim that {vr } is bounded. If this is not true, then by passing to a subse­
quence we have II vr II -+ 00. Since vr/ll vr II is a bounded sequence and its
spectrum is contained in a compact set, at least one subsequence converges
to some v* EO VN with II v* 11 = I (cf. [3]). Note that Frill Vr II -+ 0 implies
UTili Vr ii -+ (-v*), which contradicts spect(ur ) C T\To .

Now knowing that v,_ is bounded, by the same arguments we get vr -+ F*
and Ur -+ O.

For performing the second splitting write

j

v = '\' fJlr)y (t lr ) t lr ). x)
r L f..L 11 1 , ... , IJ, , .'

I'~l

From 7), ~.. F it follows that

j

F = I fJ:y,,(ti, t:, ...,t: ; x)
u=:::l

(16.6)

with lim fJ~) = fJt. Assume that the labeling process was performed such
that tt, ri, ... , t[ are the characteristic numbers of F with correct multi­
plicities. Hence,

fJ * = 0
I' '

fL > k.

Defining L'r to consist of the first k terms of (16.6) and putting Wr = vr - Vr

we have

vr -+F, W r -+ O.
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Next, for the lifting of a flow we need an improvement of Ui, Lemma 4.2].

LEMMA 16.2. Let G be a CJ-manifold. Assume that P is not a critical point
to fo in C. Then there are a connected neighborhood U of P in G, numbers
c > 0, 0 0, and a ffOJI'

v; : [0, I] X U --->- C

such that

f--- !fi(A, F)i < f --- F i - CA,

\\'henever ilf - /.., < O.

Outline of Proof. Since F is not a critical point, by definition we have for
an h E CtC:

Uo - P - h! < Uo - F II . (I 6.7)

The set of elements h satisfying (16.7) is open in CpC. Referring to (15.3) we
may put h = dog(rxb) with bEe and any feasible parameterization g. It is
also possible to fix rx =~ 1.

Put c cc=Wfo -- F II -- Uo - P - h Ii). By continuity there is a neigh­
borhood C1 of°in C, such that

'/..1 - g(a)l! - lifo - g(a) - dug(b - a)![ > 2(',

:Io - g(a) II - Un - g(a) - dog(b - a)11 > 6c,

whenever a E CJ • Therefore, f - fo P < c implies

I'f - g(a)i! - U - g(a) - dug{b - a)l! > 0.

I: f - g{a)11 - U - g{a) - dog{b - a)il > 4c.

Consequently, with the same arguments as in the proof of Lemma 4.2 in [8]
and an appropriate cut-off function X it follows that with !fi(A, g(a» =
g(a -+- AX(a) . b) a flow with the required properties is established. I

Now we are ready to prove:

THEOREM 16.3. Let VN be a normal family. Assume that F* is a local best
approximation to fE C(X) in VN\VN- 1 • Then the boundary of the (maximal)
component Cp assigned to F* contains an element P EO VV-l , which is a local
best approximation to f in V,,(P) .



y-POLYNOMIALS 129

Proof Assume to the contrary that FE VN - 1 () Cp is not a critical point
in Vk , k = kef). Consider a sequence {Fr } C Cp converging to F. Put

Fr = Ur + L'r + H'r,

according to the splitting process specified above.
Apply Lemma 16.2 to FE Vk and denote the resulting flow by f. Its

domain U C ViC contains Vr for r sufficiently large. Set

ureA) = f(A, Vr)'

In particular, the parameters gT(A) E [R2k for representing vr(A) in the manifold
U have the form

The elements of the wr-sequence may be written as follows:

j

wr = L (3,y...{tlgr), ... , tk(gr), t~+l ,... , tlLr; x). (16.8)
lL~k+l

Moreover, let wr(A) be the y-polynomial, which results from a replacement
of gr by fr(A) in (16.8). Appealing to (15.6) we estimate

with M < 00 for all fs in a neighborhood of the parameter vector for F and
all tk+1 , tk+2 ,... , t j in a neighborhood of spect(F). Finally, put

Fr(A) = vr(A) + (wT(A) + ur)(1 - A),

By applying Lemma 16.2 to (/ - Ur - wr) we get

III - Fr(A)I!

~ 11(/ - Ur - 11' ) - vrCA)I! + (1 - A)II w (A) - lVr II + AII Ur + Wr 11

~ 11(/- Ur - IVr) - Vr II - C • A+ A(I - A) M L I {3".r I + AII Ur + IVr II
lL>k

~ Ilf-Frll,

provided that

II U r + W r II ~ ~ and (16.10)
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The conditions (16.10) are satisfied for sufficiently large r. Hence, F,.(/\) E Cp

for 0 ~;; ). c:;; 1. Since F,.(l) E Vk , this contradicts Cp~ n VN -- 1 = ; with
(~,,= '/--F I, <:-f3 I. r: ...... •

The rest of the paper wi]] be devoted to the question of how many com­
ponents branch at each LBA in Vic' k ':C~ N - 1.

17. GENERIC PROPERTIES

Three integers have been assigned to each y-polynomial F: the number of
distinct characteristic numbers t ~= t(F), the number of characteristic numbers
counting multiplicities k = keF), and a number L =c L(F) satisfying

t ~ L ~ k. ( 17.1)

By the characterization theorem of Hobby and Rice [12] an alternant of
length N -L k + 1 guarantees that a y-polynomial in VN is a best approxima­
tion. On the other hand, it was observed in 1967 that the converse is not true.
The solutions have not always an alternant of this length. It is only necessary
that there is an alternant of length N + L _..L 1. When the first correct
necessary condition was derived the gap was even larger, and the smaller
bound N + t -L 1 was given.

The difference between the necessary and the sufficient conditions becomes
effective only if t < k, i.e., if at least one characteristic number of the y­

polynomial has a multiplicity greater than one. At first glance one would hope
that two of the characteristic numbers will almost never coalesce, because one
expects that small perturbations of/ remove multiplicities greater than I and
the gap would not be serious.

The following analysis will show, however, that in most cases small
perturbations do not change the multiplicities of the characteristic numbers.
In fact, for the solutions to most functions in C(X) the integers t and L
coincide. This means that there is even the tendency for the gap to become
maximal.

On the other hand certain degeneracies occur very rarely. It is crucial for
the development in Section 19 that we can eliminate the exceptional cases.

It may be appropriate at this point to recall the definitions of the integer
L. If FE Vvo put L = t = k. Otherwise, if FE Vv\ Vvo, then write F in
a form in which the terms with multiplicity one and greater than one
are separated:

t 1 m p !

F = I I CXv"y,,(tv ,... , tv ; x) + I (XVly(tV' x)
,'~1 ,,=1 v~tl+1

(17.2)
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with

Similar to (12.2) we put

a V = sign (XVrfl v' v ~- I, 2, ... , t1 ,
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rV = 1,

=0,

if a"av-i-l(-l)rflV+l < 0, v =c 1,2,... , t1 - I,

otherwise,
(17.3)

L = t + L (I - rJ.
v<cI

(17.4)

Observe that each characteristic number is counted with multiplicity one
or two when L is evaluated. In particular, we have L = t as long as N ~ 3.

By Theorem 12.3, F is an LBA to fin VN \ VN--l if and only if there is an
alternant of length N + L + I with sign -aci on the right. We note that
N + L - I is the maximal number of sign changes for the elements in the
tangent cone CF VN •

DEFINITION 17.1. The function fE C(X) is an unexceptional point in
C(X) (with respect to VN ) if the following properties hold for the approxima­
tion in Vic' k ~ N.

(i) For each local best approximation F to fin Vic there is an alternant
of exact length k + t(F) + 1. Consequently, the equality t(F) = L(F) holds.

(ii) Each local best approximation to fin ViC has the maximal order k.

(iii) There is a neighborhood U offin C(X) such that the number of
local best approximations in Vic is the same for all g E U.

(iv) For each local best approximation F tofin Vic the end points of the
interval X do not belong to the alternant.

At the moment we consider the term "unexceptional point" as a purely
formal definition. It will be shown in the sequel that the definition is consistent
with the use in differential topology [15, p. 20]. A subset of a topological
space is said to be residual, if it can be expressed as a countable intersection
of dense, open sets. Its elements may be denoted as unexceptional points. A
property is called generic if it holds for the elements of a residual set at least.

For the justification of the definition above we need"an improvement of
Theorem 15.1. It will be repeatedly used when perturbation techniques are
applied.

THEOREM 17.1. Let G be a Haar embedded manifold (e.g., let G = VN \
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V,V-1), and let f E C(X). Assume that Fo EGis a local best approximation to f
Then there is a neighborhood Woffin C(X) and a neighborhood U ofFo in G,
such that U contains exact~v one local best approximation to each g E Win G.

Proof Let Fo E G be an LBA to f Since G is a finite-dimensional manifold
and local strong uniqueness holds, we know that for some ,8 J f Fo the
component Cp of pS containing Fo is compact.
Since we may eventually replace G by a neighborhood of f~ in G we may
assume that pB is already connected. Choose 8 < te8 f -- Fo ii), 8 O.
Given g E C(X), !if - g!i <: 8, put

Observe that iilf - F -- Ii g- Fii; < 8 implies

p,-IJ C jJ~ C p~ clJ, ex E JR. (17.5)

Let F1 be a best approximation to g in the compact set pS. From Ii g - P1 I' ~

Ii g - Fo il < Ilf - Fo II + 8 we conclude that P1 E jJS-31J C pS-21J. Hence, F1 is
not a boundary point of pS and is an LBA in G. Assume that F2 is another
LBA to g in pS-21J. Since pS--21J is connected and contained in jJS-21J, both
F1 and F2 belong to the same component of JJB-IJ. This set is compact because
it is a closed subset of pS. By the uniqueness theorem for Haar embedded
manifolds [8} we have F1 = F2 • I

Combining Theorem 12.5 and Theorem 17.1 we obtain the following
corollary:

COROLLARY 17.2. Suppose the conditions of Theorem 17.1 hold. Moreover,
define U and W as in the theorem. Then the mapping from we C(X) to

U C VN which sends each f to its local best approximation is continuous.

The corollary generalizes a result of Schmidt. In [17] the continuity of the
metric projection was derived for exponentials under additional restrictions
on the alternant. An earlier result of Barrar and Loeb r1] applies to the
varisolvent subset VNO.

The anounced justification of Definition 17.1 is now established under a
hypothesis which will be proved in Section 19. We refer to (14.1) for the
definition of the constants Ck .

LEMMA 17.3. Assume that Cj' < CD, k = I, 2, ... , N. Then the elements of
C(X) being not exceptional with respect to Vy form an open, dense subset of
C(X). More01'er. there is an unexceptional f haL'ing exactly C v local best
approximations in V, .
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Proof For convenience, we introduce the set with the y-polynomial of
order zero Vo = to}, and start the inductive proof at N = O. The set of
functions I such that there is only an alternant of length 1 to I - 0 is open
and dense in C(X), Hence, the obvious extension of the lemma to N = 0 holds.

Let N ;-" I and assume that the elements of C(X) being not exceptional
with respect to VN - 1 form an open, dense subset C1 C C(X). This and
Theorem 6. I(b) imply that no LBA to IE C1 in VN has an order less than N.
Hence, (ii) is a generic property. (Here and in the sequel, (i) through (iv) refer
to Definition 17.1.)

Given a positive integer j, by Theorem 17.1 the subset of elements in C(X)
having at least j local solutions in VN \ VN - 1 is open. Combining this and the
assumption eN < 00 we conclude that the subset C" C C(X) satisfying
condition (iii) is open and dense.

Assume that F* is an LBA to FECI and that the length of the alternant
does not exceed N + t(F*) + ]. For each F in a sufficiently small neighbor­
hood U of F* in VN we have t(F) ~ t(F*). Moreover, for each g in a suffi­
ciently small neighborhood of IE C(X) the length of the alternant of g - F
cannot exceed N + t(F*) + I. From Corollary 17.2 it follows that t(F) =

t(F*), if FEU is an LBA to g. Consequently, (i) holds for an open set in
C1 (\ C2 .

To prove the density let F* be an arbitrary LBA to I in VN \ VN-l' ]n
particular. L(F*) > t(F*) is admitted. Write F* in the form (17.2). Given
o> 0 put

(1-1 \ Inv-1 I
F1 . = ~l I~l G:Vi'y,Jtv '00" t,. ; x) + G:vmvYmv(tv '00" tv, tv + I) ; x)\

Irv~O)

+ all other terms of F* unchanged. (17.6)

Note that F1 has been constructed from F* by separating characteristic
numbers such that for F1 all parameters rv in (17.3) equal one. It follows that
t(F1) = L(F1) = L(F*), and F1 is a local solution to g= I + (F1 - F*).
Moreover, by slightly modifying g in the neighborhood of extremal points
the number of points of the alternant is reduced to N ~ t(Fl ) + I ones (if
necessary).

What happens with the other LBAs when we perform the perturbation
process above? From the discussion at the beginning of the proof we know
that sufficiently small perturbations do not spoil the relation between the
length of the alternant and N + t(F) + I. Hence, by a finite number of
repetitions we obtain a function such that property (i) holds. Since 0 may be
chosen arbitrarily small, this proves the density as stated in the lemma.

Finally, if a point of the alternant is an end point of the interval, obviousl y

it can be shifted into the interior by a small perturbation.
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Since all constructions may be started from an element with a maximal
number of local solutions, the proof is complete. I

Now we want to illustrate by an example what was indicated at the be-
ginning of this section. Recall that 1'] I, 1'2 c= 2. Let Yet, x) ('I". T lR'.
Then f(x) = cos x has two best approximations in V2 when X [- I, I]
is the approximation interval [4]. For each solution the spectrum collapses
to a single point which is counted with multiplicity two. From the preceding
lemma and its proof it follows that any g in an open neighborhood off has
two local solutions in V2 and for each one k = 2, ( I.

18. THE STANDARD CONSTRUCTION OF LOCAL BEST ApPROXIMATIONS

In this section a construction for local best approximations in V", and
their maximal components is presented. Each constructed component is
characterized by a local solution in V"'~l and an additional characteristic
number. The basic idea may be found in [5]. However, contrary to the
algorithm in [5] it is applied to all local solutions in VV~] and not only to a
global one. As we see in the next section the construction yields all local
optima in V,v, whenever f is not exceptional.

In order to motivate the subsequent arguments let us begin with a few
intuitive and not quite rigorous remarks. Since the domain T is diffeomorphic
to R for simplicity we may assume T~c [f;t The mapping

(18.1 )
1>('<-, t) = (); . yet, x)

is one-one only if in 2-space the straight line {CO, t); t E 1R1} is contracted to a
point. The zero function is the reason that V1 is not a manifold. Now we may
ask whether the singularity cannot be eliminated in the opposite way: does
it make sense to blow up the singular point to a one-dimensional set by not
identifying the elements 0 . y(t1 , x) and 0 . y(t2 , x) for t1 =F t2 ? In the same
manner we might blow up a y-polynomial F of order N --- 1 in V", by writing
it in the form F + 0 . Yet, x). The following analysis gives a positive answer
to the question above and indicates which t's are essentially inequivalent.

Let t1 , t2 , ... , t p be p not necessarily disjoint numbers in T, p ;( N. Then

VV(t1 , t 2 , ... , t p ) = closure {F E V rv ; {t1 , t2 , ... , t{l} C spect(F); (18.2)

denotes the subset of Vrv withp characteristic numbers fixed [10]. There is no
serious confusion with the notation for the sign classes VAs], S2 , ... , .1'.\)
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because the letters sand t never occur at the same time in connection with the
term VN . Further if t1 = t2 = ... = tm , m < p, then the abbreviation

VN(m X t1 , tm+l ,... , t p ) = VN(t1 '00" t1 , tm+l , ... , t p ) (18.3)
~

m times

is used. In this section we refer only to the special situation with one single
number fixed at t1 = T:

Given a local best approximation F in VN - 1 , kef) = N - 1, choose a
parameterization g : A --+ VN-1 for a neighborhood ofF in the Haar embed­
ded manifold VN - 1 • Moreover, let T E T be disjoint from spect(F). We may
assume, after reducing the domain A, if necessary, that T does not belong to
the spectrum of any y-polynomial in g(A). Then by

A x IR --+ VN(T) ,

(a, ex) --+ g(a) + ex . y(T, x),
(18.4)

a parameterization for a neighborhood UT ofF == F + 0 . YeT, x) in VN(T) is
defined. Therefore, the tangent cone at F + exY(T, x) E UT is easily computed:

(18.5)

Hence, UT is a Haar embedded manifold. In particular, the elements of the
form F + 0 . YeT, x) are not degenerate in VN(T) although contained in VN-1 .

It follows from (18.5) that CFVN(T) contains a Haar subspace with dimen­
sion (N - 1) + {(F) + 1. As a consequence we have:

ASSERTION 18.1. Let F be a local best approximation tolin VN- 1 . More­
over, assume that I is not exceptional. If T ¢ spect(F), then F is not a critical
point in VN(T).

We remark that the genericity assumption in Assertion 18.1 cannot be
abandoned. To verify this, assume that L(F) > {(F). Referring to (17.3) we
have rv = 0 for at least one v < t1 • If T is chosen such that

then F is a critical point in VN(T). This may be verified by arguments as in the
proof of Lemma 12.2.

Now we introduce the standard construction.
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Construction. Let P be a local best approximation to / in is 1 ) .\ " and
T rt spect(F). Let h E Cn 0 "S(T) satisfy

f P h f--P (18.6)

By Definition 15.2 there is a curve {FA' 0 ,\ l} C VN(T) such that
II FA -- F - Ah I. = 0(1..), if 1..--+ O. For sufficiently small A:::> 0 we have

(18.7)

There are two possibilities: The component of the level set {F E Vs ;
Ilf - FII < Ilf - F I} containing the curve {FA; A :::> 0, A sufficiently small},
is disjoint from V.\-I' Then a maximal component has been constructed. If
on the other hand the component intersects VN-1 , it may be discarded. (The
corresponding components may be constructed by starting from another
LBA in VN - 1 lying at a lower level.

LEMMA 18.2. Let f be an unexceptional point with respect to VS - 1 •

Then the component constructed depends only on the choice of P and on the
interval of ~\spect(P) containing T.

Proof Given T rt spect(F) the standard construction yields a curve in
VN(T) such that its elements

satisfy the relation

(18.8)

for sufficiently small A, say for 0 < A :S: 1. Note that

is independent of A. By Theorem 17. J a neighborhood U ofF in VN-I and a
o> 0 exist such that there is a unique best approximation to g in U provided
that

11/- gil < o.

Hence, the level set

{v E U; I! g - v II :S: lif - F II}

is connected or void. By specifying g = f - (XA . YeT, x), 0 < A :S: 1, we
conclude that the construction leads to a component which is independent
of the choice of the tangent vector h satisfying 18.6 and independent of the
curve {FA} .
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Once again, let g E C(X) satisfy III~ gil < S. Denote its best approxima­
tion in U by F. After reducing S, if necessary, and recalling Corollary 17.3 we
know that the length of the alternant and its sign are the same for1- Pand
g - F. Hence, there is a tangent vector

(18.9)

in the (N ~ 1) + t(F) + I-dimensional linear subspace of the cone CF+O

VN(T) satisfying

II g - F - h Ii < II g - F II . (18.10)

The crucial point to be observed here is that So = sign f3 for f3 in (18.9) is
independent of g. Indeed, by standard arguments it follows from (18.10) that
h(x) has N - 1 + t(F) zeros. Since h is a y-polynomial of order N + t(F), by
Theorem 3.2 its generalized signs are fixed.

Consequently, there is a better approximation in U to the function g - ;"f3
Y(T, x),;" sufficiently small, than we have for g. In particular, we may choose
g = I - exY(T, x) and denote the unique best approximation to this element
by Fo,T . It follows that

:!I- exY(T, x) - FO,T Ii < III- f3Y(T, x) - FfJ •T II for 0:;::;; I f31 < I ex I , (18.11)

as long as so' ex :> so' f3 ;? 0 and II ex . Y(T, x)11 < S.
Now we compare the standard construction for two distinct numbers T1

and T2 , T1 < T2 , assuming that

We may assume that the neighborhood U has been chosen so small such that
h , T 2 ] n spect(F) = 0 whenever FEU.

Consider the continuous curve

(18.12)

where

S . I 1 I
ex = So 2" mill II y(t, x)11 ; T1 < t < T2j .

It follows from (18.11) that the y-polynomials of the curve (18.12) are better
approximations than P = F + 0 . y(t, x). The endpoints of the curve are
contained in the same component of{FEVN;II/-FII <11/-PII}. The
construction with T1 and T21eads to the same result. I
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19. COMPLETENESS OF THE STANDARD CONSTRUCTION

In this section we prove the following theorem which has the main result of
this paper as an immediate consequence.

THEOREM 19.1. L~t VN be a normal family and let fE C(X) be an un­
exceptional element with respect to V'N - 1 • Then each local best approximation
to f in VN may be constructed via its maximal component by applying the
standard construction to a local best approximation in VN - 1 which has the
maximal order k = N - I.

Given an LBA in VN we know from Theorem 16.3 that the boundary of
the associated maximal component Cp contains a local solution F in Vk ,

k = keF) ~ N - 1. Put SP := spect(F). Let {Er } be a sequence in Cp con­
verging to F and let

r = 1,2,3,... (19.1)

be the splitting defined in Section 16. To prove the theorem we distinguish 5
cases:

Case I. k = N - 1 and Ill' is a y-polynomial of order I such that spect(ul')
is disjoint from an open neighborhood To of SP.

Since VN is assumed to be normal, the spectrum of each y-polynomial in
some open neighborhood U ofFin VN - 1 is contained in To. Fix 0 as in the
proof of Lemma 18.2. For a sufficiently large r we have II ur:1 < o. Write
U r = lXr • y(T r , x). It follows that the standard construction with the choice
T = T r yields the component of the level set containing Fr • This completes
the proof for Case 1.

Case 2. k = N - 1 but we do not have Case 1.
After passing to a subsequence, if necessary, we know that m charac­

terestic numbers of Fr come close to some T ESP, with m - 1 being the
multiplicity of T in SP, To complete the proof of Case 2 we will study the
approximation problem with m characteristic numbers fixed close to T.

ASSERTION 19.2. Let T be a characteristic number of a local best approxi­
mation F to f in VN-l and let m - 1 be its multiplicity. Given Y) > 0 there is a
o> 0 such that a local best approximation F1 exists to f in VN (tl, t2 , ... , tm )

satisfying

provided that

I ti - T! ~ 0, i= 1, 2, ... , m. (19.2)
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Proof Referring to Definition 12.1 we observe that CpVN(m X T) C
CpVN- 1 . Hence, F is a critical point in VN(m X T). Since a neighborhood of
Fin VN(m X T) is a Haar embedded manifold, F is a strong LBA, i.e., for
some C > 0 and '1]1 > 0 we have

Ilf - FII ;?: Ilf~ F II + C II F - P II,

whenever FE U:={FE VN(m x T);IIF-PII <1JI}. Note that C~ 1.
Since we may reduce T) if necessary we assume 2T) < T)1' Given t1 , t2 , ... ,

tm E T define a one-one mapping ep : U ---+ VN (t1 , t2 , ... , tm) by the following
procedure: The terms ~:=1 (3,,,y,,(T, ... , T; x) in the representation of a y­
polynomial in U C VN(m X T) are replaced by ~:~1 (3"y,,(t1 , t2 , ... , t" ; x).
Thereby the factors (3" are kept. If 0 is sufficiently small and (19.2) holds,
then

il ep(F) - F II < lCT), for FE U (19.3)

We claim that the best approximation to fin the compact set ep([J) satisfies
the statement of the theorem. Indeed we have

lif - ep(F)li < Ilf - F II + lCT).

Moreover, FE c/>CU) and II F - F II ;?: T) imply II ep-l(F) - P II ;?: T) - lCT) ;?: iTJ
and

II! - FII ;?: Ilf - ep-l(F)11 -II F - ep-l(F)11

> Ilf - F II + C II P - ep-l(F)11 -lcT)

;?: Ilf~ ep(F)I! .

Hence, the optimum is attained at a point of ep(U) and not on its boundary.
Since ep(U) is open in VN (t1 , t2 , ... , tm) the proof of Assertion 19.2 is
complete. I

If '1] in Assertion 19.2 is chosen sufficiently small, the open set

is a Haar embedded manifold. With the same arguments as in the proof of
Theorem 17. I it follows that the LBA given in the assertion is unique.
Uniqueness and local compactness imply that the map which sends the
m-tuple t1 , t2 , ... , tm to the LBA in VN (t1 , t2 , ... , tm), is continuous.

As a consequence we have

ASSERTION 19.3. Let the conditions of Assertion 19.2 hold. Moreover,
assume that f - P has an alternant of length only (N - I) + t(t) + 1. Then
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there is a 0 :> 0 with the following property: Let T - 0
i == 1, 2, ... , m, and F be a local best approximation to f in

I-, T 8,

w = U{V,v(tl , I~ ,... , I",); ti t i ~ Ii' i == 1,2,... , m:.
IfF is sufficiently close to F, then each characteristic number t i ofF coincides
either with Ii or with Ii' i =e., 1,2, ... , m.

Proof Let F be an LBA to f in W having the characteristic numbers
Ii E [ti , Ii], i = 1, 2, .... m. Assume that

for some j, I ~ j ~ m. Then F is a local best approximation in VN(/I , ... ,

t j - I , IHI , .... tm). This means that t i , I ~::; i ~ m, i + j are considered fixed
while t j is a free parameter. From the characterization theorem [10, Satz 3.2]
it follows that the length of the alternant must be at least N+- t(F) + I. On
the other hand, if Ii F - F Ii is sufficiently small, the length of an alternant of
(f-- F) cannot exceed the length of the alternant of (f -- F). This contradicts
the hypothesis. Hence, Assertion 19.3 is proved. I

We remark that the existence of an LBA in W is easily verified under the
hypothesis that 0 is sufficiently small. Let V and 4> be defined as in the proof
of Assertion 19.2, where 1> depends on tl , t2 , ... , t", . The best approximation
in the compact set

U{4>(U); ti ~ Ii ~ Ii, i == 1,2,... , m}

is a local solution in W.
Now we consider a special situation to which Assertion 19.3 can be applied.
Fix 8 as in Assertion 19.3. From the discussion in the preceding section we

know that there is a unique best approximation to f - exy(T + 8, x) in a
neighborhood V of F in V'I-I provided that I ex [ is sufficiently small, for
instance I ex I < CI . Observe that F is a critical point to f in V,v((m - 1) X T,

T + 8). Hence, F is locally optimal in this set. The continuity arguments
after Assertion 19.2 shows that there is a unique local solution F 1 I.

exY(T + 8, x), F1 E U, I ex I < CI , in the set V,v(t i , ... , t"'_1 , T + 8) whenever

i = 1, 2, ... , m - 1. (19.4)

Here O2 is supposed to be chosen sufficiently small, 0 < 82 < 8. After
reducing 82 once more, if necessary, we may assume that the same is true
when T + 8 is replaced by T - 8 throughout. Finally put

w = U {V,v(tI' t2 ,... , tm ); T - 0 ~ tm ~ T + 8, T - 82 ~ t i ~ T + O~,

i= 1,2, ... ,m ~ I}.
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At this point we recall the sequence {Fr } in Cp which was specified when
defining Case 2. By construction, Fr E W holds for sufficiently large r. Hence,
Cp n W is not empty and there is an LBA F to f in Cp n W which is close to
F. By virtue of Assertion 19.3 F has the form F1 -+ cxy(t, x) with t = T -+ 0 or
t = T - 0 and F1 EVN-1 . Consequently, Cp can be generated by the standard
construction with the additional characteristic number T -+ 8 or T - D.
Hence, Case 2 is reduced to Case 1.

We remark that a slight modification of the argument above will be very
useful in the next section. Consider the set W as above but change the
restriction for tm

T - 82 ~ t; ~ T -+ 82 ,

T - 02 ~ tm ~ T -+ D.

i= 1,2,...,m-1

Consider the standard construction with the additional characteristic
number T - °2 , We conclude that either the constructed component contains
an element whose spectrum contains m times (T - 82) or the construction
with T -+ 8 leads to the same component.

The remaining cases can be dispatched more briefly.

Case 3. k ~ N - 2 and there is aTE T\spect(F) which is an accumulation
point of {spect(Fr ), r = 1, 2,... ,}.

Since (f - F) has an alternant of length k -+ t -+ 1 only and T rt SP, the
y-polynomial F is not a critical point in Vk+l(7). By Lemma 16.2 a flow if!
if! may be defined on a neighborhood of F in Vk+l(7). Similarly, the flow
operator may be extended to Vk+l(t) for any t E [7 - 8,7 -+ 8] if 0 is suffi­
ciently small. Now in the same way as in the proof of Theorem 16.3 a path in
Cp is constructed which connects an Fr with an element in Vk+l(tr ), t r E
spect(Fr) , such that all elements of the path are as good approximations as
Fr is. This is a contradiction, thus Case 3 is impossible.

Case 4. k ~ N - 2 and W r #- 0 for infinitely many r.
After passing to a subsequence, if necessary, we know that m or more

characteristic numbers of Fr tend to some 7 ESP. With the technique used
when treating Case 2 it is possible to construct a sequence in Cp such that
7 -+ 0 or 7 - 0 is an accumulation point of the spectra. Hence, this case is
reduced to Case 3 and therefore it is also impossible.

Case 5. k ~ N - 2 but we have neither Case 3 nor Case 4.
After passing to a subsequence, if necessary, we know that N - k charac­

teristic numbers ofFr tend to -+ 00 or - 00.

ASSERTION 19.4. Let U be an open neighborhood of F in Vk having a
compact closure. For any t1 , t2 , ... , tN - k E T let

W = {v -+ u E VN ; V E U, U E VN - k(t1 , t2 ''''j tN - k)}.
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IfI is not exceptional with respect to Vic' then there is an 7) 1- P such
that the level set {FE W; III - F <; 'l)) is compact, whenever t1 , t2 , •.. , tv/.
are sufficiently large.

Proof Note that PEW. By standard arguments we obtain W when we
replace the condition v E U by v E D. Obviously, for each 'l) >1 I -- P the
elements below the level 'l) form a compact subset of W. We will specify 'l)
such that the level set is already contained in W.

Let u -+ v E Wand U - u - v Ii < 'l). Then we have

u:<II/-PI]-+liP-v -+!I/--u-v (19.5)

Hence, u is bounded by a constant independent of 11' t2 , ... , tV-I,. Let
X o < Xl < ... < X k+t be an alternant of1- P. Since I is not exceptional, x"
and Xk+t are interior points of the interval. From the normality assumption
and (19.5) we conclude

I u(X) I < ('l) - III - P ID,

provided that t1 , t2 , ••• , tN-k are sufficiently large. Hence,

If(x;) - v(x;) [ ,s:; ill - v - u !I + IU(Xi)1
,s:; Iii -Pil + 2('l) - Iii -PiD, i = 0,1,... , k + t.

Since P is a strong local best approximation to I in U, it follows that II v - P Ii
is small and v E U, whenever 'l) - III - P Ii is sufficiently small. I

Let U be an open neighborhood ofPin Vk • Fix'l) as in the assertion above.
Now recall the sequence {F,} C Cp which was specified when defining Case 5.
Referring to (19.1) for sufficiently large r we have

III - Vr II < 'l),

and the characteristic numbers of u, are sufficiently large. Consequently,

Hence, there is a continuous arc between F, and v, , which runs below the
level 'l). Moreover, a continuous arc from V r to P exists in U on which the
distance to I does not exceed 'l). Finally, P is not a critical point in Vk+l(T)
with T E spect(u,). Hence, there is a continuous curve from P to a y-poly­
nomial PE Vk+l(T), such that the distance to I does not exceed II I - P II < 'l).
With this we have established that F, and P belong to the same component of
a level set in the Haar embedded manifold W. From the general theory
[8, Satz 4. I] it follows that there is a continuous curve between F, and P such
that the distance function F -+ iii - FII attains its maximum at an endpoint.



y-POLYNOMIALS 143

Therefore, we have constructed a path from Fr to P E Vk+l C VN - 1 which does
not leave Cp contradicting Cp n VN - 1 = 0. Hence, Case 5 is also impossible.

This completes the proof of Theorem 19.1. I
As a consequence of the above arguments we obtain the main result of this

paper.

THEOREM 19.5. Let VN be a normal family. Moreover, assume that Tis
an open interval on the real line. Then to each f E C(X) there are at most N!
local best approximations in VN •

Proof By Theorem 4.3 and Corollary 7.5 the statement is true for N = 1
and N= 2.

Assume that the theorem has already been proved for 1,2,... , and N - 1,
N :)0 3. Given f E C(X), by Lemma 17.3 there is a function fl E C(X) which
has at least as many LBAs in VN as f and which is not exceptional with
respect to VN - 1 • By Theorem 19.1 all LBAs toII in VN may be generated by
the standard construction. It follows from Lemma 18.2 that there are at most
N· CN - 1 ,,:::; N! different LBAs to II in VN • This concludes the inductive
proof. I

20. y-POLYNOMIALS OF ORDER 3

The bounds for the number of LBAs given in Theorem 19.5 are not sharp
for N :)0 3. Here we will establish the optimal bound for V3 •

THEOREM 20.1. Let V3 be a normal family. Moreover, assume that T is an
open interval on the real line. Then to each f E C(X) there are at most 3 local
best approximations in V3 •

Examples of functions with three LBAs are given in [9]. Therefore, three
is indeed the optimal bound.

Proof of Theorem 20.1. It is sufficient to consider functions f which are
not exceptional with respect to V2 • In the interests of simplicity we have
confined ourselves to extended totally positive kernels y. With some cost in
simplicity y could equally well have been extended sign regular. One best
approximation in V2 is denoted as P. We distinguish three cases.

Case 1. PE V2+ or (-P)E V2+.
Then P is the unique LBA to f in V2 • Since at most three maximal com­

ponents in V3 branch from P, the proof is complete.

Case 2. P E V20\V2+ and there is another LBA Pin V2 •
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At first we will prove that only two maximal components branch from P.
Write

(20.1)

After replacing f(t) by ~f( ~t) if necessary, we assume that f -- P has a
positive alternant. From Theorem 4.5 it follows that each better approxima­
tion has at least two positive (generalized) factors. Hence, if we perform the
standard construction with T = t1 + 0 or t1 -- 0, then the terms with
characteristic numbers in the neighborhood of t1 have positive factors.
Therefore, they will not coalesce. From the remark after discussing Case 2 in
Section 19 we conclude that the standard construction with T = t1 + 0 and
T = t1 - 0 yield the same component. This proves that no more than two
components branch from F'.

Let P be the second LBA to f in V2 • Since the characteristic numbers of P
coincide, there are only two possibilities to choose an additional characteristic
number T. What happens, if we put T = t1 E spect(F')? By the characterization
theorem [10, Satz 3.2] F' is the unique LBA to f in the restricted set Vit1).

Hence, all level sets in V3(tl) are connected and P must be contained in the
level set just constructed. It may be discarded. Consequently, we obtain only
one LBA in V3 when starting with P.

Case 3. P E V2\ V20 and there is another LBA P in V2 •

Since the characteristic numbers of F' and of F, respectively coalesce, from
each of them at most two components in V3 branch, Consequently, we are
ready, if only one constructed component is relevant when starting with F' or
P. From the remark after Case 2 in Section 19 we conclude that otherwise
each level set contains y-polynomials for which all 3 characteristic numbers
coalesce. It follows that we may start the iteration process with the local
solutions in UtET Vi3 X t). But this set contains at most three local solutions
[9, Theorem 5.2].

Thus the proof of Theorem 20.1 is complete. I
We remark that the arguments in the proof above may also be used for an

improvement of Theorem 19.5. At most N ~ 1 components will branch from
any FE VN-l \ Vt-l . If on the other hand FE Vt-l , then F is unique. This
leads to the recursion relation

Consequently,

Ck = k,

ck:C Hk - I)!,

N~3.

k = 1,2,3

k ~4.
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